您好 , 欢迎来到宏泽伟业商城 !
  • |
  • 客服电话:0755-88877735

主页 > 行业资讯 > 开发板和开源软件快速开发定制的HP测试仪器

开发板和开源软件快速开发定制的HP测试仪器

作者: hzadmin发布时间: 2018/12/15来源: /www.digikey.com.cn浏览量:
在上世纪 50 年代之前,包括电压计和示波器在内的所有测试仪器都是模拟仪器。在加州德尔马的 Non-Linear Systems (NLS) 于 1952 年使用步进继电器和精密电阻器开发出首个数字电压计 (DVM) 后,这一情况开始发生变化。惠普公司 (HP) 携一款定时器/计数器产品进入数字仪器市场,该产品很快增加了一些双斜率积分电路,演变为一款 DVM。
 
由于 NLS DVM 和 HP 数字测试设备驱动的是内部数字显示器,因此它们的读数均采用二进制编码的十进制 (BCD) 表示法在内部提供。这些 BCD 信号可以轻松输出到仪器后面板上的连接器。最初,这些 BCD 信号驱动打印机来记录仪器读数。
 
此外,上世纪 50 年代陆续出现的许多数字仪器可以在外部编程,使用不同的测量设置,例如测量范围等。编程是通过连接到远程开关或继电器,并最终连接到外部逻辑电路的后面板连接进行的。每个仪器具有不同的读数格式和编程要求,导致仪器自动化方面陷入无序竞争的“巴别塔”情形。上世纪 60 年代,在将计算机作为仪器控制器引入该局面后,问题变得愈加复杂,主要的原因在于,每个仪器都需要不同的独特连线方案。
 
这一形势促使 HP 在 60 年代中期开始考虑标准化的数字仪器接口。经过八年的深思熟虑和解决方案开发,HP 工程师在 1972 年 10 月刊“HP 杂志”中,面向全世界推出了 HP 接口总线 (HPIB)。HPIB 激发了“机架堆叠式”仪器系统的开发,在此类系统中,可将来自众多不同供应商的不同仪器类型彼此进行互连并连接到仪器控制器。最终,HPIB 演化为 IEEE-488,至今仍在广泛使用。
 
业界从 HPIB 系统汲取了很多自动化仪器知识,但测试要求远远超过了这类系统所能提供的性能。机架堆叠式系统主要通过将现有的测试设备与前面板控制装置搭配使用构建而成。这些仪器的主要目的是手动用作独立仪器。前面板控制装置和显示器增加了这些仪器的成本,而关于手动控制的测试设备所需的测量速度的假设,导致独立仪器无法满足许多自动化测试系统的需求。
 
仪器演变为完全数字化后,摩尔定律确保了测试设备变得速度更快且成本更低。两种趋势均有利于自动化测试,并最终让昂贵的前面板成为历史。为什么仪器的前面板总要置于计算机的控制之下呢?
 
这一问题的答案即成为仪器演变的下一步:PXI(PCI 仪器扩展)总线。此标准于 1997 年推出,并且基于因 PC 而无处不在的 PCI 接口标准。随后,基于 PCIe 接口标准的 PXI Express 于 2005 年推出。PXI 和 PXI Express 支持的数据速率远高于 HPIB,延迟也要低得多,因而促使速度快很多的测试系统得以开发。
 
PXI 或 PXI Express 机箱将为插入式模块化仪器或 I/O 模块提供电源、冷却和通信总线,所有这些均由插入式控制器或外部计算机进行控制。PXI 和 PXI Express 仪器模块会插入这些机箱,而其小型前面板除了用于信号输入和输出的连接器外,基本不含其他任何内容。PXI 和 PXI Express 系统与通过 HPIB 互连的机架堆叠式系统相比,速度快得多而且价格往往更便宜;但相对而言,它们仍比较昂贵,因为它们具有良好的模块化功能,而模块化总需要一定的成本。

仪器系统在功能日益强大的同时,体积变得越来越小,成本也越来越低。通过在组合中加入微处理器以及最终加入 FPGA,便能以相对较低的成本开发出非常复杂的定制仪器和测试系统。
 
Trenz Electronic Red Pitaya 开放式仪器平台体现了测试系统领域的最新发展状况。它能提供高速模拟输入和输出以及数字 I/O 线路,所有这些都在两个 32 位处理器和一个 FPGA 的控制之下。您可以使用各种开发工具对其进行编程,包括简单的可视化编程语言、较传统的编程语言(例如 C 和 Python),以及 Xilinx Vivado 工具套件和 FPGA 编程环境。

行业资讯

产品索引 :

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9